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Key attributes of status quo 

methods

• Surface and atmosphere retrieved 

separately.  Cannot always estimate 

smooth atmospheric perturbations.

• Number of retrieved atmospheric 

parameters must be small. The state 

vector size is limited by LUT dimension.
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Big deal for tropical atmospheres
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Figure 1: Aerosol Optical Depth (AOD) for the Indian 

Subcontinent, averaged over winter months of 2001-2004. Here 

the MISR instrument reveals spatial variability with AOD values of 

0.3 or greater for many of the areas overflown during the AVIRIS-

NG India campaign (Di Girolamo et al., 2004).  Aerosol loadings 

over urban areas are typically higher.



Small inaccuracies can matter
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Alternative: Optimal Estimation 
[Rodgers et al., 2000]
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• Estimate atmosphere and surface 

together

• Free parameters are a state vector of 

arbitrary size

• Probabilistic, permits uncertainty 

analysis and Bayesian priors



Alternative: Optimal Estimation 
[Rodgers et al., 2000]

• Measurement model:

• For covariances S, minimize the error function :
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൯𝛘2 𝐱 = ( ሻ𝐅(𝐱ሻ − 𝐲 𝐓 𝐒𝛜
−1 𝐅 𝐱 − 𝐲 + 𝐱 − 𝐱𝐚

𝐓 𝐒𝐚
−1 (𝐱 − 𝐱𝐚

𝐲 = 𝐅 𝐱 + ϵ

Bayesian priorModel match to measurement

Radiance measurement RTM prediction
random error



26 July 2017 david.r.thompson@jpl.nasa.gov 12

Example: OCO-2
Retrieval method
[Boesch et al., 2015]



Potential benefits
• RTM solution for each spectrum, models exact absorption-

in-scattering for accurate correction of H2O vapor absorption –
get past interpolation inaccuracy of LUT and limited number of 
state variables

• Relaxes Lambertian assumption

• Retrieve aerosol parameters using information across the 
VSWIR range, improving accuracy of aerosol correction. 

• Incorporates ancillary measurements in a principled way 
via the prior distribution

• Degree of Freedom (DOF) analysis permits a rigorous 
analysis of VSWIR atmospheric information content

• Posterior uncertainty estimates for use in downstream 
analyses. 
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Option 1: Fast RTMs
• Two-stream exact-single-scattering (2S-ESS) model 

(Spurr and Natraj, 2011) 
1. 2S computes the approximate multiple scattering field

2. ESS calculates the single-scatter field. 

• Incorporates state of art representations
– Nakajima-Tanaka (N-T) correction 

– Delta-M scaling

• For calculations in a 20-layer atmosphere with 100 
spectral points, 2S is ~800 times faster compared to 
DISORT with eight discrete ordinates in the half-
space.

• Accurate to within 0.1% of an “exact” RT model, 
but with computational speed comparable to two-
stream models.
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Option 2: Neural Network 

Emulation [Rivera, Verrelst, et al., Remote Sensing 2015].

• A powerful, flexible regression model

• Major advances 2012-present

• Learns the RTM response function based on 

training data

• Runs in milliseconds on commodity hardware

• Can achieve accurate emulation within 

numerical precision
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Example: modeling the 

MODTRAN A band, line by line
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Oxygen A band at two AODs
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The fine structure 
calculation is trained 
easily on a modern 
laptop CPU in just a 
few minutes 

Achieves arbitrary 
accuracy (<0.0005 
transmittance units).

The forward model 
runs in three 
milliseconds.



Conclusions

• Optimal Estimation: A principled 

probabilistic approach to advance 

atmospheric correction with combined 

estimation of surface and atmosphere

• Now tractable thanks to mature 

technologies from other fields

• Watch this space for more…

26 July 2017 david.r.thompson@jpl.nasa.gov 19



Thanks!

NASA Earth Science 

Division (AVIRIS-NG 
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National Science 

Foundation National 

Robotics Initiative
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RTMs compared
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